
WebSphere Application Server 5.0 Security –
Advanced Topics

Keys Botzum, Senior Consulting IT Specialist
keys@us.ibm.com
http://www.keysbotzum.com
http://w3.pittsburgh.ibm.com/~keys/internal (IBM Internal)

IBM Software Services for WebSphere
swsvcs@us.ibm.com
http://www.ibm.com/WebSphere/developer/services

July 2003
Last update: July 24, 2003

Slide 3

Why are We Here
This presentation will

Describe several security features that are new WAS 5.0
– These descriptions will be fairly brief assuming some familiarity
– The focus is WAS specifics and the “whys”

Define and solve several common security problems – sort of a mini-FAQ
Describe how to integrate WAS with other security systems

Slide 4

Prerequisite Knowledge and Scope
I assume you know

WAS 5.0 architecture and administration
Some WebSphere Application Server security administration experience will
help understand what is discussed
WAS/J2EE programming skills, including some knowledge of the J2EE
security features in J2EE 1.3

Scope
WAS 5.0 Distributed (Unix and Windows).

– WAS 5.0 on other platforms is similar, but not covered here
– WAS Enterprise is not specifically covered

Slide 5

Change is the Only Constant
This presentation reflects

My current opinions regarding WAS security
The product itself continues to evolve (even in PTFs)

Presentation is based on 5.0.1 w/ some 5.0.2 speculation
This will be revised as we learn more
Your thoughts and ideas are welcome

Slide 6

Agenda
Introduction
Technology/Standards

CSIv2
Java 2 security
JAAS
Servlet 2.3 mandates
JCE/JSSE
J2C

Hints, Tips, Examples
Integration
Futures
References

Slide 7

CSIv2 – What is it?
New OMG standard for the distributed security service of the
CORBA based system. Part of J2EE 1.3 requirements.
Distinguishes between network level and app level authentication

Network level is SSL and PKI authentication (including client certificates)
App level is for exchange of security attributes

– LTPA, basic auth, asserted identities, and Kerberos (future)
More listener ports

TCP/IP
SAS SSL Port for compatibility
CSIv2 SSL w/o Client Certificate Authentication
CSIv2 SSL w/Client Certificate Authentication

Slide 8

SAS vs. CSIv2
SAS Features

SSL required
BasicAuth Client Login required
Stateful required

CSIv2 Features
SSL/TCPIP Choice
Client auth choices

– SSL Client Authentication
– BasicAuth (validated), LTPA, Kerberos Client Login (we don’t yet support

Kerberos)
– Identity Assertion

Stateful/Stateless Choice
Better error handling

– Use of CORBA minor codes and messages
– Auto retry for errors which can be corrected

More flexible configuration (claim/perform, required/supported)

Slide 9

CSIv2 in WAS
Support for CSIv2 security protocol

Conformance level 0
Provides (in theory) interoperability between different vendor's application
servers. To my knowledge this has not yet been tested.
SAS protocol supported for backward compatibility (4.0.x and before)

– SAS and CSIv2 both supported simultaneously
WAS5 CSIv2 Features

Conformance Level 0
Most new features developed in CSIv2 only

– Client certificate authentication, Kerberos (future), etc
Used by WAS for IIOP communication. Irrelevant for Web Services/SOAP.
Error messages seem improved

Slide 10

CSIv2 - Identity Assertion
Delegation without the need for a common authentication
infrastructure

no need to re-authenticate or revalidate the originating client credentials
When enabled, invocation credential is asserted to the
downstream server

Normal delegation - user’s identity token passed directly to the downstream
server. Must share a common trust domain/infrastructure.
With assertion - server’s identity token is sent along with the client’s identity
information, without proof of client identity.

Four formats of identities can be present in an identity token
A principal name, a distinguished name, a certificate chain, and an
anonymous identity.
type depends on the original client authentication, E.g.,

– if the client uses SSL client authentication then the identity token to the
downstream server will contain the certificate chain

Slide 11

CSIv2 – Why do I Care?
CSIv2 lays the groundwork for secure interoperability
Identity assertion allows for looser secure coupling from server to
server

Receiving server can perform its own mapping of the identity information
This should enable more interoperability with other vendors and platforms
I believe this will eventually make secure interoperability with “foreign”
systems and other EJB servers a reality

For most applications and environments, this matters little
CSIv2 is just “magic” plumbing
Only very special situations require thinking about this

Slide 12

Agenda
Introduction
Technology/Standards

CSIv2
Java 2 security
JAAS
Servlet 2.3 mandates
JCE/JSSE
J2C

Hints, Tips, Examples
Integration
Futures
References

Slide 13

Java 2 Security – What is it?
Java standard for securing class/method level operations

Not for distributed security
“Independent” of J2EE security

By default, WAS enforces J2EE recommended restrictions, e.g.,
No thread access
EJBs have no file system access
Servlets have file system access, but

– servlets can only read/write files in WAR
Can’t even call getUserPrincipal()
Lots of restrictions on other APIs

– No using WAS internal APIs
WAS gives itself the permissions it needs

Slide 14

Java 2 Example
This pieces of code in an EJB will fail (by default) with an access
control exception when Java 2 security is enabled

String user = getCallerPrincipal();
FileOutputStream f = new FileOutputStream(“somefilename”);

By using Java 2 security, you can precisely define the access
rights of code

Slide 15

Policy Files
Pretty much standard java policy files with a few minor extensions

grant codeBase “url” {
permission <permission class> “<permission option>“, “<sub options>”;
…repeat permissions as many times as needed …

};
…repeat grants as many times as needed…

Example:
grant codeBase "file:Utilities.jar" {

/* grant read permission on file /tmp/foo.txt to Utilities.jar */
permission java.io.FilePermission "/tmp/foo.txt", "read";

};

Slide 16

Policy Files Exist at Multiple Levels
“static” – don’t touch, certainly don’t increase restrictions

java.policy
server.policy

“dynamic” – WAS dynamically computes what this applies to
Node Level

– spi.policy – provider interfaces, such as JDBC, MQ, etc. Have all
permissions by default.

– app.policy – application default (can override in EAR)
– library.policy – applies to libraries loaded on this node

was.policy – in EAR, applies to this application
ra.xml – in RAR, applies to this resource adapter

Most will only edit
was.policy
Sometimes library.policy & ra.xml

Slide 17

was.policy
Applies to this EAR’s code

Can specify restrictions on EAR, WARs, EJBs, etc
Standard java policy format with minor extensions

Location
In EAR – META-INF/was.policy
Runtime -
<root>/config/cells/<cell>/applications/<app>.ear/deployments/<app>/META-
INF/was.policy

Editing
No explicit IBM tool support. Add text file to EAR via AAT or WebSphere Studio.
Syntax errors can

– Cause servers or applications to fail to start
– Cause WAS to discard was.policy file contents at runtime. One error can

undermine entire file.
Edit carefully - you may want to use java policytool to edit first time

Slide 18

was.policy - Controlling the Level of Enforcement
Entire EAR

grant codeBase "file:${application}“
All EJBs

grant codeBase “file:${ejbComponent}”
All Utility JARs

grant codeBase “file:${jars}”
All Web Components

grant codeBase “file:${webComponent}”
A specific module/JAR

grant codeBase “file:myWebApplication.war”
grant codeBase “file:utility.jar”

Slide 19

Java 2 Security – Why do I Care?
This is the most significant feature in WAS 5.0 security

Makes it truly feasible to build a secure shared infrastructure
Really needed because of new security architecture - embedded security
server

Only way to protect WAS internal APIs, file system access, and
other system access from rogue applications

Crucial in a shared infrastructure

Slide 20

Agenda
Introduction
Technology/Standards

CSIv2
Java 2 security
JAAS
Servlet 2.3 mandates
JCE/JSSE
J2C

Hints, Tips, Examples
Integration
Futures
References

Slide 21

JAAS – What is It?
JAAS = Java Authentication and Authorization Service
Loosely based on Sun’s PAM (Pluggable Authentication Module)
Java API/Feature for login, credential manipulation, customized authentication,
and authorization

Login
– Standard API for authenticating a user using a login configuration

Subject
– Bunch of security info (open-ended structure)

Login Modules
– Each module authenticates user via callbacks to get credential information

(userid, password, etc)
– Adds Principals and Credentials to Subject

Login Configuration
– Ordered list of Login Modules to be called in sequence to update Subject
– Basically, you have multiple simultaneous identities in multiple authentications

systems: E.g., Kerberos and Operating System

Slide 22

JAAS Usage in WAS
J2EE 1.3 does not mandate JAAS. It only requires a subset as
defined by the Java 2 Connector spec (almost nothing required).
Login

To login:
LoginContext lc = new LoginContext(…);
lc.login();
WSSubject.doAs(lc.getSubject(), …)

WSSubject.doAs is required to make CORBA thread current security and
Subject consistent
Doesn’t create LTPA cookie so not for web SSO – must use J2EE web
authentication (basic, form, certificate)
Useful for clients and within server

Slide 23

JAAS Usage in WAS
Customized Authentication

Can define JAAS Application Login Configuration (or edit existing)
– Specify login modules
– This configuration must include the existing WAS login module in order

to obtain WAS credentials (which are required for security to work)
You can define custom login modules with extra credential info, but

– Until PTF 2, the custom Subject info can’t be accessed
• Will be accessible using WSSubject.getCallerSubject() or

getRunAsSubject()
• Still not transmitted over between servers

– Has no effect on WAS Security. WAS credentials still required.
– Doesn’t integrate with TAIs (yet – should in PTF 2)

Authorization – just Java 2, not JAAS extensions
Can define Java policy files, but not Principal constraints
Can’t build your own custom SecurityManager

Slide 24

JAAS LoginModule and ClassLoaders
JAAS is part of the JRE

Ordinarily, classes have to be on lib/ext to be seen by JAAS since it’s part of
the JVM
This is rather unfortunate as it undermines EAR separation and WAS
infrastructure

WAS has special enhancement - LoginModuleProxy
Makes it possible to use code in EAR with JAAS

– This uses the concept of thread based classloaders
When specifying a new JAAS Login Module

– Use class
com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy

– Custom property
• delegate = {your LoginModule class}

Slide 25

JAAS – Why do I Care?
Does provide

Standards based API for authentication
Way to perform additional authentication checks during login
Way to attach additional attributes to a specific user for later use (as of
5.0.2)

– E.g., you might want to get extra info from LDAP and attach to user
– Remember that this isn’t shared among servers… yet….

But it isn’t
a “standards-based” replacement for a custom registry
a way to customize authorization

You still need WAS security, custom registries, TAIs, and standard
J2EE web login methods

Slide 26

Agenda
Introduction
Technology/Standards

CSIv2
Java 2 security
JAAS
Servlet 2.3 mandates
JCE/JSSE
J2C

Hints, Tips, Examples
Integration
Futures
References

Slide 27

Servlet 2.3 – Minor Security Changes
Servlet 2.3 Introduces Run-As for servlet

Used when calling an EJB
Overrides the usual delegation model where the client identity propagates
from the web client to the servlet to the EJB
Configured in the deployment descriptor (web.xml)
Very useful for handling requests that need to access a secure EJB under
another identity

WAS Run-As does not affect servlet.init() method
Servlet 2.4 spec clarifies that init() should be affected by Run-As

Slide 28

JCE/JSSE – What is It?
Standard APIs

JSSE = Java Secure Sockets API
JCE = Java cryptography API
Widely requested by customers

Fully supported in WAS 5.0
Customers must use the IBM implementation that is in the JDK/JRE
directory

– It should be compatible with Sun’s as its behavior is in the spec
– Do not replace with Sun’s jsse.jar/jce.jar

Customers can add additional providers for JCE
– Do not remove existing providers

Anecdotal evidence suggests that adding new JSSE providers may not
work

IBM JCE/JSSE includes a number of useful providers
Probably sufficient for most customers without specialized requirements

Slide 29

JCE/JSSE – Why do I Care?
Neither is particularly interesting, but are standard

Now you have a portable/easy way of performing encryption and opening
HTTPS connections

Slide 30

J2C Authentication Providers
Maps from one identity to another in external system

Takes current user identity and generates new identity (in Subject)
E.g., take current Subject and create a Subject suitable for establishing CICS
session for same user

Today
Used for datasources and other enterprise systems (CICS, IMS, etc)

– Trivial mapping – all users are mapped to same userid/password
Why do I Care?

Pretty lame today, but in the future ….
– New modules might perform more complex mapping

• I assume we’ll see smart CICS, IMS, SAP, etc modules
• Maybe even a smart datasource module

You can write your own providers today IF the J2C resource adapter can handle
what you are doing

– E.g., custom mappings are of little value if the adapter can’t handle (efficiently)
the required authentication

– Tight coupling between adapter and authentication provider

Slide 31

Agenda
Introduction
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 32

was.policy Example – Read/Write Files
grant codeBase "file:${application}" {

/* all of these work */
permission java.io.FilePermission "/temp/foo.txt", "read";
permission java.io.FilePermission "c:/temp/foo3.txt", "read, write";
permission java.io.FilePermission "c:\\temp\\foo2.txt", "read, write";

/* this works */
permission java.io.FilePermission "c:\\temp\\foodir\\-", "read";

/* This doesn't work */
permission java.io.FilePermission "c:/temp/foodir2/-", "read";

};

Be aware of Unix vs. NT pathname syntax

Slide 33

was.policy Example – Get User Identity
This enables the use of WSSubject.getCallerPrincipal(),
EJBContext.getCallerPrincipal(), and req.getUserPrincipal()

grant codeBase "file:${application}" {
permission java.security.SecurityPermission "printIdentity";

};

Slide 34

was.policy Example - JAAS Login and WSSubject.doAs

grant codeBase "file:${application}" {
permission javax.security.auth.AuthPermission "createLoginContext";
permission javax.security.auth.AuthPermission "doAs";

/* notice the quoting. The outer string contains 3 parts. The last part is the
principal name which must also be quoted.

TBD: this may be giving away too many permissions. */
permission javax.security.auth.PrivateCredentialPermission "* * \"*\"", "read";

};

Slide 35

Determining Needed Java 2 Permissions
Unfortunately, the docs are lacking. Fortunately, you can figure it
out.

[2/7/03 21:21:38:293 EST] 44c2189b WebGroup E SRVE0026E:
[Servlet Error]-[access denied ;java.security.SecurityPermission
printIdentity]: java.security.AccessControlException: access denied
(java.security.SecurityPermission printIdentity) permission
java.security.SecurityPermission "printIdentity“

[2/7/03 21:48:26:415 EST] 205ed8ae WebGroup E SRVE0026E:
[Servlet Error]-[access denied ;java.io.FilePermission
c:\home\.wscprc read]: java.security.AccessControlException:
access denied (java.io.FilePermission c:\home\.wscprc read)
permission java.io.FilePermission “c:\\home\\.wscprc”, “read”

Slide 36

Configuring Java 2 Permissions is Tedious
It can be quite tedious to determine the permissions needed by an
application

You get an exception, fix it, then repeat
com.ibm.websphere.java2secman.norethrow is your friend during
development

Set on JVM as a system property
Java 2 security violations are reported in the log, but not enforced
Collect all of the violations and address them all at once

Slide 37

Agenda
Introduction
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 38

JAAS Login (Server Side)
public Subject login(PrintWriter out) throws LoginException {

try {
LoginContext lc = new LoginContext("WSLogin",
new WSCallbackHandlerImpl(userid, "realm", password));
lc.login();
out.println("Login done successfully
");
return lc.getSubject();

} catch (LoginException e) {
// insert error processing code
throw e;

}
}

Slide 39

JAAS doAs()
….login and do something…
Subject s = login(out);
if (s != null) {

com.ibm.websphere.security.auth.WSSubject.doAs(s, new Runner(out));
}
logout(s);
….
class Runner implements java.security.PrivilegedAction {

PrintWriter out;
public Runner(PrintWriter out) {

this.out = out;
}
public Object run() {

doSomethingSecure(out));
return null;

}
};

Slide 40

JAAS Logout
Beware of credential leaks

Here we destroy them
May make more sense to create Subject cache and reuse Subjects

public void logout(Subject s, PrintWriter out) throws LoginException {
try {

LoginContext lc = new LoginContext("WSLogin", s);
lc.logout();
out.println("Logout done.");

} catch (LoginException le) {
out.println("Failed to logout");

}
}

Slide 41

Agenda
Introduction
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 42

Why Did Login Fail? – Today/WAS 5.0.1
There is nothing (yet) in WAS to tell you why a login failed

WAS does not provide detailed information on authentication error
InfoCenter gives an example that uses ErrorReporter from a JSP – this
example is completely wrong and will be removed
No one can see the registry error (except trace).

To determine why login failed
Use servlet filters

– Detect that login failed based on HTTP error code
– Repeat login to registry to determine error from underlying registry.
– Beware:

• May trigger premature account lockouts (extra login attempts)
• WAS Registries provide no useful error info. You’ll have to go

directly to “real” registry.
• Have to write your own HTTPServletResponse

Slide 43

Login Failure Reason – WAS 5.0.2
Get “last failure” on thread (server or client side)

Throwable t =
com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

Step through exception tree to find “cause”
Throwable t =
com.ibm.websphere.security.auth.WSLoginFailedException.getCause()
Throwable t =
com.ibm.websphere.security.WSSecurityException.getCause()

Eventually, you’ll get to the “real” exception. That’s the cause. E.g.,
com.ibm.ws.security.registry.nt.NTException
javax.naming.AuthenticationException

Works in client or server. Works in servlet or EJB.
Will be disabled by default in client for security reasons

Slide 44

Who Called Me?
J2EE defines APIs for getting user info

Request.getUserPrincipal(), EJBContext.getCallerPrincipal()
Outside of J2EE constructs, there is no “standard” way to obtain
the identity of the current user
IBM provides an extension – WSSubject with static methods

Can be called from anywhere. Identity of current thread.
– WSSubject.getCallerPrincipal() -- > userid of caller (a string)

With PTF 2, WSSubject will be extended
– You can obtain the JAAS Subject

• Read only
• Requires appropriate Java 2 permissions

– WSSubject.getCallerSubject() – JAAS Subject of Caller
– WSSubject.getRunAsSubject() – JAAS Subject of RunAs attribute

Slide 45

Custom User Attributes
Sometimes people want custom user attributes

Organization or other registry info
Special access rights, etc

Use a post login servlet filter
Add attributes to HTTPSession
Might be wrong abstraction: servlet vs EJB needs

Use JAAS w/ custom module
Get the Subject and add attributes post login
Will flow transparently and be accessible w/ WAS V5.0.2, but won’t flow from server
to server
May not work with all authentication methods

Write a simple in memory cache keyed off of user identity
Lookup data as needed and cache in memory
Might have to perform duplicate lookups in a distributed environment
Cache invalidation can be tricky

Slide 46

Anonymous Thread Problem
A thread needs to access some secured resource (e.g., an EJB)

Threads that are created are detached from the WAS runtime
– No J2EE context
– No identity, security will fail any request requiring authorization

WAS 5.0 Enterprise Extensions
Async Bean service addresses these issues for arbitrary parallel threads

Generally less of an issue with base/ND since separate threads
forbidden

Servlets still have this problem
– init() method
– Servlets with anonymous clients

Slide 47

Need an Identity
Option #1: Run-As – easy, simple, incomplete

Set Run-As on servlet methods, EJB methods, etc
Doesn’t address servlet init()

Option #2: JAAS Login
Use JAAS to obtain an authenticated Subject and use WSSubject.doAs()
Be cautious of performance overhead and credential leaks. Caching and
reusing Subjects probably warranted.

Slide 48

Agenda
Introduction
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 49

LDAP Directory Authorization
WAS searches the user registry for users

LDAP directories often contain sensitive information
– Corporate organization information
– Personal phone numbers / email addresses

Some organizations want to restrict access to more than just the passwords
– Restrict access to the whole registry by disabling anonymous browsing
– Restrict access to the individual sensitive fields using ACL's

TAM also does this. It sets ACLs on the LDAP registry.
WAS can authenticate to registry if needed (anonymous is used by
default)

In LDAP user registry configuration, specify bind DN and password
Should not be LDAP admin account
Ideally account just for WAS, with only read access

Slide 50

Sync Node
If you make major changes to the security settings and all nodes
aren’t up and running life becomes fun
Nodes can’t start because they don’t know new security settings

Get authentication/authorization failures when trying to talk to dmgr
Have to force a sync using syncNode.bat

Slide 51

Admin Tool Password Prompting
WAS security runtime needs a password if security enabled

Can be stdin, prompt, properties, or specified programmatically
WAS tools rely on the implicit prompting rather than prompting themselves
Still often use ‘prompt’ (GUI based) by default

You want to force to use stdin prompting as is normal with
command line tools

SOAP layer is incapable of prompting at all
Must force to use RMI JMX connectors

– –conntype RMI –port <bootstrap port>.
• Bootstrap is usually 9809 on dmgr and 2809 for nodes.
• Applies to most cmd line tools, including wsadmin. If you leave

out port or there is an error, will silently fall back to SOAP.
• tperfviewer is special, use “./tperfviewer.bat localhost 9809 RMI”

– You still need to edit sas.client.props to use stdin instead of prompt
Beware that RMI is firewall hostile

Slide 52

Security Timeout/Tuning
LTPA expiration time

Controls the lifetime of the cookie sent to the browser
Once the timeout occurs, user will have to login again
Default: 120 minutes - Shorter values strengthen security

– LTPA tokens harder to steal
– Increases user frustration
– Harms performance

Recommendation: leave as is unless customer needs dictate otherwise
Cache timeout time

Controls how long WAS caches information related to security
– information from the registry: groups, etc

Default: 600 seconds - Shorter values improves security
– System is able to detect registry changes faster
– Harms performance

Recommendation: Increase this unless registry changes frequently/critical
Size of caches can also be tuned using various undocumented properties
In PTF 2 there will be a way to force a cache flush

Slide 53

Getting Current User Registry Handle
import com.ibm.websphere.security.UserRegistry;
{

Context ic = new InitialContext();
Object objRef = ic.lookup("UserRegistry");
UserRegistry userReg = (UserRegistry)PortableRemoteObject.narrow(objRef,

UserRegistry.class);
out.println(" registry says display name is: " +

userReg.getUserDisplayName(req.getUserPrincipal().getName()));
}

You’ll need to add wssec.jar to your classpath in order to compile your code.

Slide 54

Small Tips
WAS_UseRemoteRegistry

Set on Global Security as custom property
Can be “node” or “cell”
Forces registry to run out of process eliminating need for root access for
app servers w/ OS registry
Introduces dependency on Node manager
I suspect use of this will be rare

Logging users out
ibm_security_logout URL

WebSphere Studio does not seem to enforce Java 2 security in
spite of having a checkbox for it

Slide 55

Agenda
Introduction
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 56

On Integration
Definition

Integration is about using WAS security in the real world where there are
other security products and secure systems. Fortunately, WAS 4.0 is
specifically designed to address some, but not all, of the integration issues.

Motivation
WAS is not an island
WAS security must integrate into real a company with existing systems

– user registries
– authentication systems

Slide 57

Direct LTPA Integration
Domino has support for recognizing LTPA tokens
Multiple WAS cells

if each WAS cell shares LTPA encryption keys and registry, then they can
communicate securely
export LTPA keys using Security Center and import into peer domains

See InfoCenter for details on Domino integration and multiple WAS
cells

Slide 58

Trusted Associations
WAS can be told to "trust" web proxy authentication systems via
Trusted Associations

Write custom plug-in Java code that WAS calls when identifying user web
request. WAS will trust your code to identify user.
WAS will still obtain some information from registry (LDAP or custom)
Only works with web proxies. Won't help with other SSO systems. For
example, existing windows authentication (without some magic).

– Note that both Access Manager and a forthcoming WAS enhancement
will address Windows SSO

Slide 59

Writing a Trusted Interceptor
extend TrustAssociationInterceptor interface
isTargetInterceptor(HttpServletRequest req)

examine incoming request to see if request applies to this interceptor (there can be
several)
probably look for some expected cookie or header

validateEstablishedTrust(HttpServletRequest req)
examine request to determine if request can be trusted
take the time to find a secure way to validate information
for example, with some systems, the request includes a secret password. If using
some form of token, verify digital signature and extract user information
verifying IP address is not sufficient. Header can be forged.
if can't verify, rely on network security (definitely use plugin HTTPS)

getAuthenticatedUsername(HttpServletRequest req)
return the user's name as a string
WAS will lookup name and group information in registry and create credentials

Slide 60

Writing a Trusted Interceptor
Be careful, you are extending WAS trust domain!!

WAS is trusting the interceptor to validate identity. If the interceptor can be
tricked, WAS is now open to attack
Code should be reviewed by at least one other senior technical person
Never do this without careful analysis and design

See InfoCenter section for details
Effort:

Probably 1-4 weeks of development effort if detailed information about
proxy available at start, but highly skilled and extremely security conscious
person required.
Realistically involves weeks of meetings to get needed information

Sample TAI on my web site
Shows issues to be addressed
Not suitable for reuse

Slide 61

Custom Registry
Normally, WAS supports either OS registry or one LDAP registry.
Can create custom registry which provides access to arbitrary
registries

implement UserRegistry interface
configure into WAS

Registries may not use WAS services
bootstrap issue during initialization
Issue in node manager (no J2EE infrastructure)

Slide 62

Writing a Custom Registry
Extend UserRegistry interface
The interface has been improved over 4.0. Here's a summary of
the key functions:
Result getUsers(String pattern, int max)

Return all users matching the pattern (e.g, "a*")
In LDAP: (&(objectclass=person)(uid="a*"))
The max limits the size of the result set

Result checkPassword(String userId, String password)
Verify that user's password is valid. Done via ldap_bind in LDAP.

String getUniqueUserId(String userName)
Convert username to registry specific unique value (DN in LDAP)
In LDAP, search and return DN.

Slide 63

Writing a Custom Registry
String getUserSecurityName(String uniqueUserId)

Convert registry specific unique value to unique username.
In LDAP, lookup given DN and return uid

List getUniqueGroupIds(String userName)
Return groups for this user
In LDAP, search for user's DN, then search for groups with member=this
user's DN

Similar for groups

Slide 64

Writing a Custom Registry
Caveats

uniqueness is important. If your registries contain duplicate ids, life can get
fun and ambiguous.
fault tolerance is critical. If there is an error, WAS expects you to recover
automatically after the error.
watch out for multithreading issues

Effort:
About 2-4 weeks of development effort, but highly skilled person required
Realistically this is preceded by weeks of meetings to get the needed
information on the existing registry

Sample quality custom registry on my web site
Supports combining multiple registries together
Replication and failover
Can be reused, sometimes with little change

Slide 65

Warnings About Interceptors and Registries
Writing security code is difficult, be careful:

typically much harder than initially appears
will it scale?

– fast enough?
– handle large numbers of users and groups?

is it really secure?
– consider points of attack
– can people forge credentials?

is it robust?
– what about failure scenarios?

is it manageable?
– how will you debug this? (hint: use WAS JRAS)

testing can be very difficult and time consuming

Slide 66

TAM Authentication Integration with WAS
Web SSO integration

WebSEAL/TAM authenticates web browser user and passes that
information on to WAS

– Leverages standard WAS TAI function
– WAS ships with WebSEAL/TAM TAI

• Configure via admin console, under LTPA section
Access Manager can directly issue LTPA tokens - deprecated
Both work great

Slide 67

Agenda
Changes
Technology/Standards

Hints, Tips, Examples
Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Access Manager

Futures
References

Slide 68

Authorization
WAS needs to authorize access to resources
Ordinarily, WAS follows normal J2EE defined rules
This authorization decision can be externalized

JSR 115: Java Authorization Service Provider Contract for Containers
– WAS will support in the future
– I expect many products will implement

Limited use of IBM proprietary authorization interface (TAM uses)
Be aware, some products claim integration that does not really
exist

May require turning off WAS security
May only authorize URLs
May require special code generation

Slide 69

TAM Authorization Integration with WAS
WAS delegates authorization decisions to TAM

Asks TAM to determine user mapping to J2EE roles on the fly
WAS then applies J2EE specified constraints based on role

This may be more complicated than it appears
Domain conflicts between WAS and TAM.

– Somewhat difficult to express and manage versus native product tools.
– E.g., it’s easier to specify a WPS security constraint in the WPS than in

TAM
Some evidence of performance issues, particularly with WPS

Applications can also directly use TAM APIs to obtain credentials
and make authorization decisions, but I do not endorse this

Slide 70

Database Integration
Issue: Conflicts between Database and Application Security
Models

WAS knows the user's identity. The DB does not.
All DB connections use a connection pool with a common identity
Database audit and database authorization functions are useless (this is
bad)
Non-options

– separate connection for each user (won't scale)
– new connection for each request (won't scale)

Slide 71

Database Integration
Options:

get over it, and (best choice)
– write application audit functions in app layer
– write application authorization functions in app layer

rely on DB specific and proprietary SQL for changing connection identity.
– not going to work with CMP beans
– Can be made to work with WAS datasource using 5.0 features (we

have this working with DB2)
– not all databases support this

Slide 72

Agenda
Introduction
Technology/Standards
Hints, Tips, Examples

Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Database
Access Manager

Futures
References

Slide 73

Tivoli Access Manager (TAM) and WAS
Good products that are leaders in their areas

WAS is a Java application server (J2EE, etc)
TAM is a web SSO/advanced authentication and enterprise authorization
tool

Both compliment the other when appropriate
If your customer uses WebLogic and TAM, why buy WAS?
If your customer uses WebSphere, does not always benefit from TAM

WAS is a high quality secure product in its own right
Identify specific needs and then determine what additional value TAM
provides
TAM adds powerful security features, it doesn’t make WAS significantly
more secure

Slide 74

Tivoli Access Manager (TAM) and WAS
Beware of these facts

Proxy servers are hard to make work with existing apps
– Rewriting all embedded URLs in arbitrary app is impossible - think

about embedded JavaScript and applets
– Often requires code changes.
– WebSEAL in web server plugin mode addresses this – unclear what

functional issues this may raise
TAM is a big product in its own right

– Additional products add complexity and cost
– If the function is needed, this is worth it. If not, ….

Slide 75

When TAM is a Good Fit
Things TAM does, that WAS doesn’t address

Web SSO across multiple products (WAS and WebLogic for example)
Cross DNS domain SSO
Advanced authentication: SecureID, password strength testing, password
expiration, login rules, RACF authentication, etc

– By design, WAS doesn’t do this and neither does IBM Directory Server
– Note: other LDAP directory products can enforce some rules. But, still

no UI component for handling problems from web interface.
Classic build vs. buy situation. Need to understand how many features you
need and evaluate the value of buying versus building.

Slide 76

When TAM is a Good Fit
Already looking into Web SSO or authorization tools (e.g., TAM
competitors)

TAM simply works better with WAS and WPS then the competition
– TAIs ship with WAS
– WAS and WPS authorization can call out to TAM
– Integration is real, not smoke and mirrors – although there may be

some issues

Slide 77

When to Consider TAM – Other Reasons
Your like the idea of a central authorization rules server

Only TAM (today) can integrate with WAS and WPS in this way
You believe in “defense in depth”

WebSEAL can be placed in DMZ in front of web server. Only authenticated
traffic enters enterprise intranet.
Be aware:

– Now a high function product is in the DMZ which requires lots of
infrastructure in a place that is supposed to be minimal

– Proxy server configuration raises URL issues that must be addressed
early in development

These are reasonable choices, but I’m not comfortable
recommending them. It’s up to you to decide.

Slide 78

Agenda
Introduction
Technology/Standards
Hints, Tips, Examples

Java 2
JAAS
Authentication
Etc

Integration
Authentication
Authorization
Database
Access Manager

Futures
References

Slide 79

Possible Future Features
End to End Security

Improved J2C
– I’m optimistic this will someday provide a way to transmit identity

information from WAS to other systems: CICS, database, etc
Kerberos
JSR 115: Java Authorization Service Provider Contract for Containers

Authorization
Embedded Tivoli Access Manager components
Instanced based admin authorization
Fine-grained Namespace ACLs

Run-As for servlet.init() method (required by spec)
Better JAAS Integration

Roles mapping defined by JAAS module
The custom Subject isn’t transmitted to other servers as of today. It will be
in the future.

Slide 80

References/Acknowledgments
This isn’t my work alone:

This presentation based on presentation by Tony Cowan and myself from
Developer Works 2002

Redbooks
WebSphere V5.0 Security SG24-6573 available from
http://www.redbooks.ibm.com

This presentation and related tidbits can be found at
http://w3.pittsburgh.ibm.com/~keys/internal

WAS Security Hardening paper (will be updated for 5.0 soon)
WAS Security Hardening Presentation

Access Manager Info
Internal http://integration.cruz.ibm.com/
Enterprise Business Portal with Tivoli Access Manager Redbook (SG24-
6556)

Slide 81

Appendix

Slide 82

Login Failure Examples
5.0.2 example using IBM extensions

Login Error Servlet
Preferred choice by far

5.0/5.0.1 example using servlet filters and retry logic
Filter that Determines Login Error Reason

Slide 83

Login Error Servlet Listing
package person.botzum.servlet;

import java.io.IOException;
import java.io.PrintStream;
import java.io.PrintWriter;

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl;

public class LoginTestServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

PrintWriter out = resp.getWriter();

String userid = req.getParameter("userid");
String password = req.getParameter("password");

Slide 84

Login Error Servlet Listing
out.println("
userid = " + userid);

out.println("
password = " + password);
try {

LoginContext ctx =
new LoginContext(

"WSLogin",
new WSCallbackHandlerImpl(userid, password));

ctx.login();
out.println("login succeeded");
out.println(

"you are "
+ ctx.getSubject().getPrincipals().iterator().next());

} catch (LoginException e) {
out.println("
Login failed w/ Loginexception:" + e);

Throwable t = e;
while (true) {

t = determineCause(t, out);
if (t == null)

break;
}

} catch (Exception e) {
out.println("
Login failed w/ exception:" + e);
e.printStackTrace(out);

}
}

Slide 85

Login Error Servlet Listing
static public Throwable determineCause(Throwable e, PrintWriter out) {

out.println("

");
e.printStackTrace(out);

Throwable t = null;
out.flush();

try {
if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException) {

t = ((com .ibm..websphere .security .auth .WSLoginFailedException) e) .getCause();
}

if (e instanceof com.ibm.websphere.security.WSSecurityException) {
t = ((com.ibm.websphere.security.WSSecurityException) e) .getCause();

}
} catch (IndexOutOfBoundsException e2) {

out.println("Got that Index error again. Ignoring...");
}

if (t != null) {
out.println("
this was caused by this exception = " + t);
return t;

} else {
out.println("No root cause!!");
printFinalExceptionInfo(e, out);
return null;

}
}

Slide 86

Login Error Servlet Listing
static private void printFinalExceptionInfo(Throwable e, PrintWriter out) {

if (e instanceof com.ibm.ws.security.registry.nt.NTException) {
out.println("
This is an NT exception. Error code = " + ((com.ibm.ws.security.registry.nt.NTException)

e).getErrorCode());
return;

}

if (e instanceof javax.naming.AuthenticationException) {
javax.naming.AuthenticationException e2 = (javax.naming.AuthenticationException) e;
out.println("
This is a Java naming exception: " + e2);
out.println(", message: " + e2.getExplanation());
out.println("
 root cause: " + e2.getRootCause());
return;

}

out.println("Final Exception: " + e);
}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

}

public void init() throws ServletException {

super.init();

}
}

Slide 87

Filter That Determines Login Failure Reason
public class LoginFilter implements Filter {
public void doFilter(ServletRequest req,ServletResponse resp,FilterChain chain) throws

ServletException, IOException {
String userid = req.getParameter("j_username");
String password = req.getParameter("j_password");
MyResponse newres = new MyResponse((HttpServletResponse) resp);
chain.doFilter(req, newres);
if (newres.getStatus() != newres.SC_OK) {

HttpSession session = ((HttpServletRequest) req).getSession();
try {
/* Repeat authentication here. Note: can’t use WAS registry as it hides the underlying

error from you. Have to go direct to LDAP…sigh…
*/
} catch (Exception e) {

session.setAttribute("exception", e);
}

}
newres.completeRedirect();

}

Slide 88

Custom HTTPServletResponse
public class MyResponse

implements
HttpServletResponse {

HttpServletResponse res;
int status = SC_OK;
String desiredRedirect = null;
public

MyResponse(HttpServletRespons
e res) {

this.res = res;
res.setBufferSize(32000);

}
public void completeRedirect()

throws IOException {
if (desiredRedirect != null)
res.sendRedirect(desiredRedire

ct);
}

public int getStatus() {
return status;

}
public void sendRedirect(String

arg0) throws IOException {
desiredRedirect = arg0;
//res.sendRedirect(arg0);

}
….
public void addCookie(Cookie

arg0) {
res.addCookie(arg0);

}
…..repeat for every method in

HttpServletResponse…

Slide 89

© Copyright IBM Corporation 2003. All rights reserved.

IBM, the IBM logo, the e-business logo and other IBM products and services are trademarks or
registered trademarks of the International Business Machines Corporation, in the United States,
other countries or both. References in this publication to IBM products, programs, or services do
not imply that they will be available in all countries in which IBM operates.

Product release dates and/or capabilities referenced in this publication may change at any time at
IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a
commitment to future product or feature availability in any way.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries or both.

All other trademarks, company, products or service names may be trademarks, registered
trademarks or service marks of others.

